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Evaluating one-loop integrals at finite temperature
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Departamento de Fisica, Universidad de Santiago, Casilla 307, Correo 2, Santiago, Chile

Received 18 December 1996

Abstract. Generic one-loop integrals at finite temperature, appearing in integrations over non-
static modes, are given a definite expression in terms of series in powers of∼ (m/T )2, where
m is a mass parameter andT is the temperature.

In the imaginary time formalism of field theory at finite temperature [1] it is sometimes
useful to express a Feynman integral representing a given Feynman diagram including
bosonic propagators as a combination of diagrams whose propagators involve either zero
or non-zero Matsubara frequencies,ωn = 2πnT , n = 0,±1,±2, . . . (or a combination of
both in the case of higher-loop diagrams) [2].

We present a short and direct way to evaluate generic one-loop integrals appearing in
the evaluation of (amputated) Feynman diagrams including only non-static propagators, i.e.,
those with non-zero Matsubara frequencies. Using dimensional regularization to regularize
those integrals in dimensionD = 3− 2ε, ε > 0, we have that they can always be written
as

J (m; a, b) = T µ2ε
∞∑

n=−∞
n6=0

∫
dD k

(2π)D
(k2)a

[k2+ ω2
n +m2]b

(1)

whereµ is the scale of dimensional regularization,a is an integer greater than or equal to
zero andb is a positive integer. When the Feynman integrals depend explicitly on the sum
of the external three momenta at a vertex,P , integrals of the form (1) can be seen as the
coefficients of a Taylor expansion of the Feynman integral aroundP 2 = 0. In the case of
a Feynman integral involving denominators of the form

[k2+ ω2
n +m2

1][(k + P)2+ ω2
n +m2

2]

the use of Feynman parametrization is understood in order to obtain the form given in
equation (1), after Taylor expansion. This means that the mass parameterm in equation (1)
will be a function of the variable of integration, sayx. The integral overx as well as the
function of x appearing there are not written explicitly.

Using the definition of Matsubara frequencies,ωn = 2πnT , and rescaling the momenta,
masses and scaleµ in order to have dimensionless variables

k2→ K2 ≡
(

k

2πT

)2

m2→ M2 ≡
( m

2πT

)2

µ2→ �2 ≡
( µ

2πT

)2

(2)
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we arrive to

J (M; a, b) = T (2πT )3+2a−2b2�2ε
∞∑
n=0

∫
dD K

(2π)D
(K2)a

[K2+ (n+ 1)2+M2]b
(3)

where the sum was also arranged.
Using the known formulae for dimensionally regularized integrals [3] we find that

J (M; a, b) = T (2πT )3+2a−2b 2�2ε π
D/2

(2π)D
0(D2 + a)
0(D2 )

0(l)

0(b)
S(M, l) (4)

where

S(M, l) =
∞∑
n=1

1

[n2+M2]l
(5)

andl = b−a−D/2. By taking the temperature to be larger than all the masses and energies
in the problem, that is, by assuming thatM2 < 1, we can use the binomial expansion in
order to evaluateS(M, l). Therefore,J (M; a, b) can be written as

J (M; a, b) = T (2πT )3+2a−2b2�2ε π
D/2

(2π)D
0(D2 + a)
0(D2 )0(b)

∞∑
n=0

(−1)n

n!
M2nζ(2l + 2n)0(l + n)

= T (2πT )3+2a−2b 1

4π3/2

(
µ2

πT 2

)ε
0( 3

2 − ε + a)
0( 3

2 − ε)0(b)
∞∑
n=0

(−1)n

n!
M2n

×ζ(2b − 2a − 3+ 2ε + 2n)0(b − a − 3
2 + ε + n). (6)

As is well known, the divergencies present in the Feynman integrals will show up in
dimensional regularization as poles whenε→ 0. In integrals of the form (1), the existence
of divergencies is tightly related to the relation between the powersa and b, as one can
see for example by power counting. The gamma function0(z) is an analytic function of
z with simple poles at the pointsz = −m (for m = 0, 1, 2,. . . ). But it is clear that the
condition b − a − 3

2 + n = −m is impossible to satisfy becausea, b and n are integers.
Also, the Riemann’s zeta functionζ(z) has a simple pole atz = 1. This implies that for
n = 2+ a − b the zeta function has a singularity. Sincen > 0, this equality only holds if
b − a 6 2. In this case, we have that to orderε

ζ(2b − 2a − 3+ 2ε + 2n) = ζ(1+ 2ε)

= γE + 1

2ε
+O(ε) (7)

where γE is the Euler’s constant. In the same way, expanding the gamma functions
appearing in equation (6) to orderε

0(z + ε) =
∫ ∞

0
dt e−t t−ztε

=
∫ ∞

0
dte−t t−z + ε

∫ ∞
0

dte−t t−z ln t

= 0(z){1+ εψ(z)} (8)

and using the property of theψ function [4]

ψ(A+ a) = ψ(A)+
a−1∑
p=0

1

A+ p (9)
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we find that

J (M; a, b) = T (2πT )3+2a−2b 0( 3
2 + a)

2π2(b − 1)!

{
(−1)a−b

√
πM4+2a−2b

2(2+ a − b)!

×
[

1

ε
+ γE − ln

(
4πT 2

µ2

)
−

a−1∑
p=0

2

3+ 2p

]

+
∞∑
n=0

n6=a−b+2

(−1)n

n!
M2nζ(2b − 2a − 3+ 2n)0

(
b − a − 3

2
+ n

)}
(10)

for b − a 6 2.
For b − a > 2, the argument of the gamma function,b − a − 3

2 + n, is always larger
than 1. Therefore,ζ(z) and0(z) are not singular whenε→ 0 and thus we can simply set
ε = 0 in equation (6). Therefore,

J (M; a, b) = T (2πT )3+2a−2b 0( 3
2 + a)

2π2(b − 1)!

∞∑
n=0

(−1)n

n!
M2nζ(2b − 2a − 3+ 2n)

×0(b − a − 3
2 + n). (11)

These expressions are well suited for algebraic programming. In fact, it is easy to write
a small program in for example MAPLE V [5] in order to evaluate equations (10) and (11).
In this way one is able to evaluate the integrals to the desired order inM2.

As a simple example, let us consider the integral (see [2], equation (3.11))

I (m) = T µ2ε
∞∑

n=−∞

∫
dD k

(2π)D
1

[k2+ ω2
n +m2]

= T µ2ε
∫

dD k

(2π)D
1

[k2+m2]
+ J (m; 0, 1) (12)

where we have used the notation of equation (1). The first integral is finite and equal to
−(1/4π)mT . And since in this caseb − a 6 2 we can apply equation (10), obtaining

I (m) = −mT
4π
+ T

2

π
0

(
3

2

)
−
√
π

2
M2

[
1

ε
+ γE − ln

(
4πT 2

µ2

)]
+ζ(−1)0

(
−1

2

)
+ M

4

2
ζ(3)0

(
3

2

)
= − mT

4π
+ T

2

12
− m2

16π2

[
1

ε
+ γE − ln

(
4πT 2

µ2

)]
+ m4ζ(3)

8(2π)4T 2
(13)

where equation (2) has been used. This result coincides, up to orderε, with that of
equation (3.12) in [2]. Here we have also included the orderm4 term. The temperature-
dependent part of the one-loop effective potential can be obtained from here by integrating
in m equation (13) timesm.
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