Evaluating one-loop integrals at finite temperature

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 306977
(http://iopscience.iop.org/0305-4470/30/19/031)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.110
The article was downloaded on 02/06/2010 at 06:01

Please note that terms and conditions apply.

Evaluating one-loop integrals at finite temperature

Lautaro Vergara
Departamento de Fisica, Universidad de Santiago, Casilla 307, Correo 2, Santiago, Chile

Received 18 December 1996

Abstract

Generic one-loop integrals at finite temperature, appearing in integrations over nonstatic modes, are given a definite expression in terms of series in powers of $\sim(m / T)^{2}$, where m is a mass parameter and T is the temperature.

In the imaginary time formalism of field theory at finite temperature [1] it is sometimes useful to express a Feynman integral representing a given Feynman diagram including bosonic propagators as a combination of diagrams whose propagators involve either zero or non-zero Matsubara frequencies, $\omega_{n}=2 \pi n T, n=0, \pm 1, \pm 2, \ldots$ (or a combination of both in the case of higher-loop diagrams) [2].

We present a short and direct way to evaluate generic one-loop integrals appearing in the evaluation of (amputated) Feynman diagrams including only non-static propagators, i.e., those with non-zero Matsubara frequencies. Using dimensional regularization to regularize those integrals in dimension $D=3-2 \varepsilon, \varepsilon>0$, we have that they can always be written as

$$
\begin{equation*}
J(m ; a, b)=T \mu^{2 \varepsilon} \sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} \int \frac{\mathrm{d}^{D} k}{(2 \pi)^{D}} \frac{\left(k^{2}\right)^{a}}{\left[k^{2}+\omega_{n}^{2}+m^{2}\right]^{b}} \tag{1}
\end{equation*}
$$

where μ is the scale of dimensional regularization, a is an integer greater than or equal to zero and b is a positive integer. When the Feynman integrals depend explicitly on the sum of the external three momenta at a vertex, \boldsymbol{P}, integrals of the form (1) can be seen as the coefficients of a Taylor expansion of the Feynman integral around $P^{2}=0$. In the case of a Feynman integral involving denominators of the form

$$
\left[k^{2}+\omega_{n}^{2}+m_{1}^{2}\right]\left[(k+P)^{2}+\omega_{n}^{2}+m_{2}^{2}\right]
$$

the use of Feynman parametrization is understood in order to obtain the form given in equation (1), after Taylor expansion. This means that the mass parameter m in equation (1) will be a function of the variable of integration, say x. The integral over x as well as the function of x appearing there are not written explicitly.

Using the definition of Matsubara frequencies, $\omega_{n}=2 \pi n T$, and rescaling the momenta, masses and scale μ in order to have dimensionless variables

$$
\begin{align*}
& k^{2} \rightarrow K^{2} \\
& \equiv\left(\frac{k}{2 \pi T}\right)^{2} \tag{2}\\
& m^{2} \rightarrow M^{2} \equiv\left(\frac{m}{2 \pi T}\right)^{2} \\
& \mu^{2} \rightarrow \Omega^{2} \equiv\left(\frac{\mu}{2 \pi T}\right)^{2}
\end{align*}
$$

we arrive to
$J(M ; a, b)=T(2 \pi T)^{3+2 a-2 b} 2 \Omega^{2 \varepsilon} \sum_{n=0}^{\infty} \int \frac{\mathrm{d}^{D} K}{(2 \pi)^{D}} \frac{\left(K^{2}\right)^{a}}{\left[K^{2}+(n+1)^{2}+M^{2}\right]^{b}}$
where the sum was also arranged.
Using the known formulae for dimensionally regularized integrals [3] we find that

$$
\begin{equation*}
J(M ; a, b)=T(2 \pi T)^{3+2 a-2 b} 2 \Omega^{2 \varepsilon} \frac{\pi^{D / 2}}{(2 \pi)^{D}} \frac{\Gamma\left(\frac{D}{2}+a\right)}{\Gamma\left(\frac{D}{2}\right)} \frac{\Gamma(l)}{\Gamma(b)} S(M, l) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
S(M, l)=\sum_{n=1}^{\infty} \frac{1}{\left[n^{2}+M^{2}\right]^{l}} \tag{5}
\end{equation*}
$$

and $l=b-a-D / 2$. By taking the temperature to be larger than all the masses and energies in the problem, that is, by assuming that $M^{2}<1$, we can use the binomial expansion in order to evaluate $S(M, l)$. Therefore, $J(M ; a, b)$ can be written as

$$
\begin{align*}
J(M ; a, b)= & T(2 \pi T)^{3+2 a-2 b} 2 \Omega^{2 \varepsilon} \frac{\pi^{D / 2}}{(2 \pi)^{D}} \frac{\Gamma\left(\frac{D}{2}+a\right)}{\Gamma\left(\frac{D}{2}\right) \Gamma(b)} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} M^{2 n} \zeta(2 l+2 n) \Gamma(l+n) \\
= & T(2 \pi T)^{3+2 a-2 b} \frac{1}{4 \pi^{3 / 2}}\left(\frac{\mu^{2}}{\pi T^{2}}\right)^{\varepsilon} \frac{\Gamma\left(\frac{3}{2}-\varepsilon+a\right)}{\Gamma\left(\frac{3}{2}-\varepsilon\right) \Gamma(b)} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} M^{2 n} \\
& \times \zeta(2 b-2 a-3+2 \varepsilon+2 n) \Gamma\left(b-a-\frac{3}{2}+\varepsilon+n\right) . \tag{6}
\end{align*}
$$

As is well known, the divergencies present in the Feynman integrals will show up in dimensional regularization as poles when $\varepsilon \rightarrow 0$. In integrals of the form (1), the existence of divergencies is tightly related to the relation between the powers a and b, as one can see for example by power counting. The gamma function $\Gamma(z)$ is an analytic function of z with simple poles at the points $z=-m$ (for $m=0,1,2, \ldots$). But it is clear that the condition $b-a-\frac{3}{2}+n=-m$ is impossible to satisfy because a, b and n are integers. Also, the Riemann's zeta function $\zeta(z)$ has a simple pole at $z=1$. This implies that for $n=2+a-b$ the zeta function has a singularity. Since $n \geqslant 0$, this equality only holds if $b-a \leqslant 2$. In this case, we have that to order ε

$$
\begin{align*}
\zeta(2 b-2 a-3+2 \varepsilon+2 n) & =\zeta(1+2 \varepsilon) \\
& =\gamma_{E}+\frac{1}{2 \varepsilon}+\mathcal{O}(\varepsilon) \tag{7}
\end{align*}
$$

where γ_{E} is the Euler's constant. In the same way, expanding the gamma functions appearing in equation (6) to order ε

$$
\begin{align*}
\Gamma(z+\varepsilon) & =\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-t} t^{-z} t^{\varepsilon} \\
& =\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-t} t^{-z}+\varepsilon \int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-t} t^{-z} \ln t \\
& =\Gamma(z)\{1+\varepsilon \psi(z)\} \tag{8}
\end{align*}
$$

and using the property of the ψ function [4]

$$
\begin{equation*}
\psi(A+a)=\psi(A)+\sum_{p=0}^{a-1} \frac{1}{A+p} \tag{9}
\end{equation*}
$$

we find that

$$
\begin{align*}
J(M ; a, b)= & T(2 \pi T)^{3+2 a-2 b} \frac{\Gamma\left(\frac{3}{2}+a\right)}{2 \pi^{2}(b-1)!}\left\{(-1)^{a-b} \frac{\sqrt{\pi} M^{4+2 a-2 b}}{2(2+a-b)!}\right. \\
& \times\left[\frac{1}{\varepsilon}+\gamma_{E}-\ln \left(\frac{4 \pi T^{2}}{\mu^{2}}\right)-\sum_{p=0}^{a-1} \frac{2}{3+2 p}\right] \\
& \left.+\sum_{\substack{n=0 \\
n \neq a-b+2}}^{\infty} \frac{(-1)^{n}}{n!} M^{2 n} \zeta(2 b-2 a-3+2 n) \Gamma\left(b-a-\frac{3}{2}+n\right)\right\} \tag{10}
\end{align*}
$$

for $b-a \leqslant 2$.
For $b-a>2$, the argument of the gamma function, $b-a-\frac{3}{2}+n$, is always larger than 1. Therefore, $\zeta(z)$ and $\Gamma(z)$ are not singular when $\varepsilon \rightarrow 0$ and thus we can simply set $\varepsilon=0$ in equation (6). Therefore,

$$
\begin{align*}
J(M ; a, b)= & T(2 \pi T)^{3+2 a-2 b} \frac{\Gamma\left(\frac{3}{2}+a\right)}{2 \pi^{2}(b-1)!} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} M^{2 n} \zeta(2 b-2 a-3+2 n) \\
& \times \Gamma\left(b-a-\frac{3}{2}+n\right) . \tag{11}
\end{align*}
$$

These expressions are well suited for algebraic programming. In fact, it is easy to write a small program in for example MAPLE V [5] in order to evaluate equations (10) and (11). In this way one is able to evaluate the integrals to the desired order in M^{2}.

As a simple example, let us consider the integral (see [2], equation (3.11))

$$
\begin{align*}
I(m) & =T \mu^{2 \varepsilon} \sum_{n=-\infty}^{\infty} \int \frac{\mathrm{d}^{D} k}{(2 \pi)^{D}} \frac{1}{\left[k^{2}+\omega_{n}^{2}+m^{2}\right]} \\
& =T \mu^{2 \varepsilon} \int \frac{\mathrm{~d}^{D} k}{(2 \pi)^{D}} \frac{1}{\left[k^{2}+m^{2}\right]}+J(m ; 0,1) \tag{12}
\end{align*}
$$

where we have used the notation of equation (1). The first integral is finite and equal to $-(1 / 4 \pi) m T$. And since in this case $b-a \leqslant 2$ we can apply equation (10), obtaining

$$
\begin{align*}
I(m)=- & \frac{m T}{4 \pi}+\frac{T^{2}}{\pi} \Gamma\left(\frac{3}{2}\right)-\frac{\sqrt{\pi}}{2} M^{2}\left[\frac{1}{\varepsilon}+\gamma_{E}-\ln \left(\frac{4 \pi T^{2}}{\mu^{2}}\right)\right] \\
& +\zeta(-1) \Gamma\left(-\frac{1}{2}\right)+\frac{M^{4}}{2} \zeta(3) \Gamma\left(\frac{3}{2}\right) \\
= & -\frac{m T}{4 \pi}+\frac{T^{2}}{12}-\frac{m^{2}}{16 \pi^{2}}\left[\frac{1}{\varepsilon}+\gamma_{E}-\ln \left(\frac{4 \pi T^{2}}{\mu^{2}}\right)\right]+\frac{m^{4} \zeta(3)}{8(2 \pi)^{4} T^{2}} \tag{13}
\end{align*}
$$

where equation (2) has been used. This result coincides, up to order ε, with that of equation (3.12) in [2]. Here we have also included the order m^{4} term. The temperaturedependent part of the one-loop effective potential can be obtained from here by integrating in m equation (13) times m.

Acknowledgments

This work was supported by Departamento de Investigaciones Cientificas y Tecnologicas, DICYT, of Universidad de Santiago de Chile under contract no 049631VC.

References

[1] Dolan L and Jackiw R 1974 Phys. Rev. D 93320
[2] Arnold P and Espinosa O 1993 Phys. Rev. D 473546
[3] Ramond P 1990 Field Theory: A Modern Primer (Reading, MA: Addison-Wesley)
[4] Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series and Products (Orlando, FL: Academic)
[5] Heck A 1993 Introduction to Maple (New York: Springer)

